

FPGA deployment and scaling made simple

Chris Kachris chris@inaccel.com

What software developers want

Source: Databricks, Apache Spark Survey 2016, Report

What software developers want

Source: Databricks, Apache Spark Survey 2016, Report

inaccel mission

> Help companies speedup their applications by using accelerators (FPGAs) seamlessly

> How?

Unique InAccel FPGA orchestrator

Automated deployment, scaling and management of FPGA clusters

···· </>

••••

Main challenges of FPGAs

maccel

InAccel Products (Accelerators as IP)

Current limitations for FPGA deployment

- > Currently only one application can talk to a single FPGA accelerator through OpenCL
- > Application can talk to a **single** FPGA.
- > Complex device sharing
 - From multiple threads/processes
 - Even from the same thread
- > Explicit allocation of the resources (memory/compute units)
- > User need to specify which FPGA to use (device ID, etc.)

From single instance to data centers

</>

···· </>

inaccel

- > Easy deployment
- > Instant scaling
- > Seamless sharing
- > Multiple-users
- > Multiple applications
- > Isolation
- > Privacy

Scalable Orchestrator for FPGA clusters contracted

Automated Deployment, Scaling and Management of FPGA clusters

Seamless invoking from C/C++, Python, Java and Scala. No need for OpenCL

Automatic configuration and management of the FPGA **bitstreams** and memory

Seamless **sharing** of the FPGA cluster from multiple threads/processes/applications/users

Fully **scalable**: Scale-up (multiple FPGAs per node) and Scale-out (multiple FPGA-based servers over Spark)

© Copyright 2019 InAccel

FPGA bitstream repository

> FPGA Resource Manager is \bigcirc integrated with Jfrog n bitstream repository that is used to store FPGA bitstreams

🝙 inaccel

Artifact Repository Browser

Tree Simple Q		T.
∨ ♥ bitstreams		
— > 🖻 intel		
- ∨ 🖾 xilinx		
— > 🖻 aws-vu9p-f1-04261818/dynamic_5.0/com		
— V 🖾 u200		
— 🗸 🖻 xdma_201820.1/com		
— ∨ 🖾 inaccel/ml		
> 🖾 ALS/1.0/4Solver		
— > 🖾 KMeans/1.0		
→ 🗁 LogisticRegression/1.0/4Gradients		
— ∨ 🖾 xilinx/vision/0.1		
— > 🖾 2Affine_4Convolve		
> 🗇 2Affine_4EdgeDetection		
→ 🗁 xdma_201830.2/com/xilinx/vitis		
— > 🖻 dataCompression/lz4/1.0		
— > 🖻 quantitativeFinance		
— > 🖻 security/aes256/1.0		
> 🗇 vision/1.0/1stereoBM		
— > ▷ inaccel/ml/LogisticRegression/1.0/4Gradients		
✓ ☎ xilinx/vitis/quantitativeFinance/monteCarlo/1.0/1Calibr	atio	on_1F
🗟 bitstream.json		
MCAE_k.xclbin		

inaccel bitstream install [command options]

Single command

🖻 vision/1.0/1stere	eoBM
General	Properties 🚖
Info	
Name:	1stereoBM 🗍
Repository Path:	bitstreams/xilinx/u200/xdma_201830.2/com/xilinx/vitis/vision/1.0/1stereoBM/ 🗍
Deployed By:	inaccel
Artifact Count / Size:	Show
Created:	05-12-19 13:39:52 +00:00 (40d 20h 10m 24s ago)

https://store.inaccel.com

FPGA repository - artifact

 \times

🔊 inaccel		bitstream.json	
Artifact Repository Browser			
Tree Simple Q 🚖 🍸	🖻 vision/1.0/1stereoBM		4 1
O bitstreams D intel D intel D xilinx D avs-vu9p-f1-04261818/dynamic_5.0/com D v200 D v dxdma_201820.1/com D lacs(1/n) D ALS(1,0/450/ver D LogisticRegression/1.0/4Gradients D X linx/vision/0.1 D D ALS(1,0/450/ver D X linx/vision/0.1 D D ALS(1,0/450/ver D V xilinx/vision/0.1 D D D ALS(1,0/450/ver D D D ALS(1,0/450/ver D V xilinx/vision/0.1 D D D D D D D D D D D D D D D D D	General Properties ★ Info	<pre>1 { 2 "name": "krnl_stereopipeline.xclbin", 3 "bitstreamId": "com.xilinx.vitis.vision", 4 "version": "1.0", 5 "description": "Xilinx Vitis Stereo Block Matching Accelerator", 6 "platform": { 7 "vendor": "xilinx", 8 "name": "u200", 9 "version": "xdma_201830.2" 10 }, 11 "kernels": [{ 12 "name": [13 "stereopipeline_accel" 14], 15 "kernelId": "stereoBM", 16 "arguments": [{ 17 "type": "ap_uint<32>*", 18 "name": "img_L", 19 "access": "n"</pre>	
> Artifact: JSON	l file + bitstream	20 },	

21

22

23

24

25

26

27

28

{

},

"type": "ap_uint<32>*",

"type": "ap_uint<32>*",

"name": "img_disp",

"name": "img_R",

"access": "r"

Artifact: JSON file + bitstreau

- >> Vendor
- >> FPGA cards
- >> Version
- >> Kernels
- >> Arguments

www.inaccel.com™	

FPGA repository CLI

- > Simple CLI interface for the local repository
- > Local repository can fetch artifacts from external links (e.g. Xilinx or InAccel repository) with proprietary artifacts

Command	Description	reposi
inaccel bitstream decrypt	Decrypt an FPGA binary	
inaccel bitstream encrypt	Encrypt an FPGA binary	
inaccel bitstream parse	Parse FPGA binary build-metadata	
inaccel bitstream install	Install a bitstream to the local or a remote repository, from a local or a remote source	
inaccel bitstream list	List all the bitstreams or detailed information for specific bitstreams in the local or a remote repository	
inaccel bitstream remove	Remove one or more bitstreams from the local or a remote repository	

Compatible with any Xilinx Vitis libraries

Generality

> Build your own repository of accelerators.

InAccel provides a stack of cores including Machine Learning. You can combine all these libraries, along with your own ones, seamlessly in the same application.

> Test it with any Xilinx Vitis/SDAccel example

InAccel Documentation Overview Accelerators ~ FPGA Resource Manager ~ Getting Started Deploying Accelerators API Docs ~ Programming Guides Examples Seamless Integration ~ About ~

automatically scale your accelerated solutions using in-house or 3rd-party accelerators, from high-level programming languages.

1. Prerequisites

- Docker Community Edition (CE)
- FPGA Runtime (Intel or Xilinx)
- Git | OpenJDK (Java Development Kit) 8 | Maven
- OpenCV 3.4.2

👌 Amazon F1

Find InAccel Default Image, equipped with all the required development tools (and many more), available free on EC2 Community AMIs section.

2. Download InAccel

git clone https://bitbucket.org/inaccel/release.git inaccel && cd inaccel

Computer Vision

Acknowledgements:

The Computer vision accelerators (FPGA bitstreams/kernels) used for the purposes of this demonstation are written by developers at Xilinx.

Resources:

• SDAccel Examples - Vision

https://docs.inaccel.com/latest/manager/examples/

Simple invoking, deployment

No need for OpenCL

No need to allocate buffers No need to specify bitstreams No need to program specific device

inaccel::Request add_req {"com.inaccel.math.vector.addition"}; add_req.Arg(a).Arg(b).Arg(c).Arg(size); inaccel::Coral::Submit(add_req);

- Much simpler invoking
- Software-alike function invoking
- No need for OpenCL directives
- Same API for C/C++, Java, Python
- Native API

```
std::cout << "Device[" << i << "]: program successful!\n";
OCL CHECK(err, krnl vector add = cl::kernel(orogram. "vadd
```

```
OCL_CHECK(err, krnl_vector_add = cl::Kernel(program, "vadd", &err));
valid_device++;
```

www.inaccel.com™

std::string binaryFile = argv[1];

// Allocate Memory in Host Memory

// Create the test data

for (int i = 0; i < DATA_SIZE; i++) {</pre>

auto devices = xcl::get xil devices();

// and will return the pointer to file buffer.
auto fileBuf = xcl::read_binary_file(binaryFile);

for (unsigned int i = 0; i < devices.size(); i++) {</pre>

q = cl::CommandQueue(

std::cout << "Trying to program device[" << i

source_hw_results[i] = 0;

// OPENCL HOST CODE AREA START

int valid_device = 0;

OCL_CHECK(err,

OCL CHECK(err,

} else {

if (err != CL_SUCCESS) {

auto device = devices[i];

cl_int err; cl::Context context; cl::Kernel krnl_vector_add; cl::CommandQueue q;

size_t vector_size_bytes = sizeof(int) * DATA_SIZE;

std::vector<int, aligned_allocator<int>> source_in1(DATA_SIZE); std::vector<int, aligned_allocator<int>> source_in2(DATA_SIZE); std::vector<int, aligned_allocator<int>> source_hw_results(DATA_SIZE); std::vector<int, aligned_allocator<int>> source_sw_results(DATA_SIZE);

std::generate(source_in1.begin(), source_in1.end(), std::rand); std::generate(source_in2.begin(), source_in2.end(), std::rand);

source_sw_results[i] = source_in1[i] + source_in2[i];

// get_xil_devices() is a utility API which will find the xilinx

cl::Program::Binaries bins{{fileBuf.data(), fileBuf.size()}};

// Creating Context and Command Queue for selected Device

OCL_CHECK(err, context = cl::Context({device}, NULL, NULL, &err));

context, {device}, CL_QUEUE_PROFILING_ENABLE, &err));

<< "]: " << device.getInfo<CL_DEVICE_NAME>() << std::endl;

cl::Program program(context, {device}, bins, NULL, &err));

// platforms and will return list of devices connected to Xilinx platform

// read_binary_file() is a utility API which will load the binaryFile

// When creating a buffer with user pointer (CL_MEM_USE_HOST_PTR), under the hood user ptr // is used if it is properly aligned. when not aligned, runtime had no choice but to create // its own host side buffer. So it is recommended to use this allocator if user wish to

// create buffer using CL_MEM_USE_HOST_PTR to align user buffer to page boundary. It will
// ensure that user buffer is used when user create Buffer/Mem object with CL_MEM_USE_HOST_PTR

Instant scaling

Example on scaling to 2 FPGA using the

Instant Scalability

> Instant scalability to

- >> Multiple kernels
- >> Multiple FPGAs in the same server
- >> Multiple servers (using Kubernetes)

inaccel start --fpga=xilinx:0,xilinx:1

Lower than 2x speedup is due to the lower clock rate and PCI conflicts

Throughput (MB/sec)

Zero overhead, Improved Throughput

Throughput for Gzip (MB/sec)

Optimized Pipeline

> No need for OpenCL event to synchronize pipeline execution

> Instant pipeline using InAccel FPGA manager => Optimized pipeline

- >> Higher Throughput
- >> Simplified code (no need for OpenCL events, barriers)
- >> Useful for multiple kernels, multiple threads/applications

Seamless sharing of the resources

Utilization from:

- Multiple threads
- Multiple processes
- Multiple applications
- Multiple users
- Multiple **containers**

Jupyter - JupyterHub

 Deploy and run your FPGA-accelerated applications using Jupyter Notebooks

InAccel manager allows the instant deployment of FPGAs through JupyterHub

JupyterHub on FPGAs

- Instant acceleration of Jupyter Notebooks with zero code-changes
- > Offload the most computationally intensive tasks on FPGA-based servers

Help

▼ ■ ■

Streaming

InAccel - Spark Spark

spark = SparkSession.builder.config(conf=conf).appName("LogisticRegressionExample").getOrCreate()

C jupyter LogisticRegressionExample

Insert

MLlib Pipeline

This notebook shows h

You can read more abc

In []: from pyspark.sql import SparkSession

Kernel

Interrupt

Restart

Cell

N Run

Widgets

Restart & Clear Output

Restart & Run All

Reconnect Shutdown

Change kernel

For this example we'll be using the Extended Modified NIST (National Institute of Standards and Technology) Letters dataset which is a set of handwritten letters derived from the NIST Special Database 19 and converted to a 28x28 pixel grayscale image format. The dataset merges a balanced set of the uppercase and lowercase letters into a single 26-class task. Further information on the dataset contents and conversion process can be found in the paper available at https://arxiv.org/abs/1702.05373v1

e on historic data and apply it to streaming data.

Logout

InAccel - Spark O

Trusted

BinderHub on FPGAs

- BinderHub enables an end user to easily specify a desired computing environment from a Git repo
- InAccel integration allows users to accelerate their applications from git repo using remote FPGA-based accelerators

FPGA-based Server

https://inaccel.com/deploying-fpgas-from-git-repos-instantly-using-binderhub/

Unique FPGA monitoring tool

FPGA monitoring tool

> Utilization of the kernels

- >> Time to read from DDR
- >> Time to execute
- >> Time to write back in DDR

> Useful for performance optimization

- > Support for multiple kernels, multiple FPGA cards
- > Integrated with Coral FPGA manager

FPGA Manager deployment

Easy to Deploy

- > Launch a container with InAccel's Docker image or even deploy it as a daemonset on a Kubernetes cluster and enjoy acceleration services at the drop of a hat.
- > https://hub.docker.com/u/inaccel/

docker hub	Q Search for great content (e.g., mysql)	Explore	Pricing	Sign In	Sign Up
	inaccel Edit profile Community Organization III InAccel & https://inaccel.com/ O Joined November 12, 2018				
	Repositories				
	Displaying 6 of 6 repositories				
	inaccel/coral-free By inaccel • Updated 32 minutes ago InAccel FPGA Resource Manager Free Container	27 Download			

- Easy deployment
- Easy scalability
- Easy integration

Compatibility with Xilinx Ecosystem

> FPGA repository for the Vitis Library

ALVEO. U200

Pre-compiled bitstreams for all Vitis Library for Alveo family cards (U50, U200, U250, U280)

ALVEO. U250

Scaling of Vitis libraries to multiple kernels, multiple Alveo cards, AWS f1.4x, f1.16x

ALVEO, U280

ALVEO, U50

Accelerated ML on top of SQL 2019

- >> Zero Code changes
- >> Higher Performance
- >> Lower OpEx

https://www.youtube.com/watch?v=qu7ct_4CknM

https://medium.com/@inaccel/accelerated-spark-ml-using-fpgas-on-top-of-microsoft-sql-server-2019-big-data-cluster-88acc130d780

Integration with SQL Big Data Cluster 2019

https://medium.com/@inaccel/accelerated-spark-ml-using-fpgas-on-top-of-microsoft-sql-server-2019-big-data-cluster-88acc130d780

InAccel's Coral manager integrated with Spark

- > Integrated solution that allows
 - >> Scale Up (1, 2, or 8 FPGAs per node)
 - >> Scale Out to multiple nodes (using Spark API)
 - >> Seamless integration
 - >> Docker-based deployment
 - >> No-need to specify which FPGA to use

Serverless deployment

contraction in accel

- Integrated framework for serverless deployment
- > Compatible with Kubernetes
- > Compatible with Kubeless, Knative
- > Users only have to upload the images on the S3 bucket and then InAccel's FPGA Manager automatically deploy the cluster of FPGAs, process the data and then store back the results on the S3 bucket.
- > Users do not have to know anything about the FPGA execution.

https://medium.com/@inaccel/fpgas-goes-serverless-on-kubernetes-55c1d39c5e30

Runtime specification

> The InAccel Coral runtime specification aims to specify the configuration, and execution interface for the efficient management of any accelerator-based hardware resource.

> Hook Developers

> Hook developers can extend the functionality of a compliant runtime by hooking into an accelerator's lifecycle with an external application. Example use cases include sophisticated hardware configuration, advanced logging, IP licensing (hardware identification - authentication - decryption), etc.

> Platform Developers

> Platform developers can build runtime implementations that expose diverse hardware resources and system configuration, containing low-level OS and hardware-specific details, on a particular platform.

https://github.com/InAccel/runtime

Pricing model (enterprise version)

FPGA Resource manager

- > Pricing model per node (server)
- > Each node can have 1 to 8 FPGAs

FPGA Resource manager	20 servers or less	More than 20 servers
Monthly	\$300/servers	\$250/server
Yearly	\$3,000/server	\$2,500/server

Successful Use cases, Integrations

E XILINX.

MEMBER

ALLIANCE PROGRAM

Registered Technology Partner

Partnerships

FPGA Design Solutions Network **intel**

Azure

Making FPGA-based acceleration easy

info@inaccel.com

www.inaccel.com

